Building a high-performance, scalable ML & NLP platform with Python

Sheer El Showk

CTO, Lore Ai

www.lore.ai

Lore is a small startup focused on developing and applying machine-learning techniques to solve a wide array of business problems.

We are product-focused but we also provide consulting services (because building and selling products is hard!)

We are self-funded so we need to be cost-effective but also flexible and scalable.

- Need to be ready to pivot if product is not working
- Need to support both consulting work and product development

Over time developed a complex but modular stack:

- ML & NLP tools/services
- Standard web-stack: DB, caching, API servers, web servers
- Fully scalable (all components can be parallelized)

This has allowed us to develop & maintain several products:

- A chatbot
- A content-based recommender engine
- Our flagship product, Salient, a powerful document analysis engine

The Task

Applications

- Contract Management: automate labelling database of contracts (PDFs, word, OCR)
 - Contract type, expiration date, other parties, important clauses, etc..
- Analyze news
 - Build a database of product releases or funding rounds from press releases
 - Find companies fitting a profile -- competitors, acquisition, investors, etc...
- Patent and Policy Document Analysis
 - Build an ontology and network linking concepts and content

The Challenges

Lore's stack has all the normal challenges of developing a large web/business application in python.

The addition of ML/NLP brings additional challenges whose solutions are less well known.

Scalability

- Some use cases require processing millions of documents
 - E.g. we have a news DB with 4 million articles in it
- Python considered "slow" and not scalable (hard to parallelize)
 - Java preferred language of enterprise
- ML brings new problems:
 - Need models to be very performant
 - Parallelizing harder: need to share models/data between servers

Maintainability

- Mixing many different technologies
 - ML/compute stack: theano, gensim, spaCy, etc...
 - Web stack: django, celery, mysql, etc..
- Multiple servers/services can mean expensive/difficult devops.
- Large code base with different kinds of code (JS/web vs ML/NLP) make it hard to coordinate between developers.

Flexibility

- Business requirements change very quickly
 - Need to provide a wide range of services from same platform
 - Need to be able to easily upgrade/improve parts of system
- Agility often requires integrating existing off-the-shelf solutions to solve non-core tasks.
- Easy to deploy or scale a deployment.

Where we Started

Where we started...

- → Monolithic python-based server + PHP UI
- → MySQL DB backend
- → Hard coded dependence on target document set.
- → Basic off-the-shelf NLP tools
 - ♦ NLTK, etc..
- → Serial pipeline
- → No redundancy or scalability
- → Hard to install/maintain (all manual)

A few pivots and consulting gigs later...

The new stack...

- → Kubernetes & docker for devops
- → Celery for parallelization
- → Micro-services Architecture
- → In-house NLP engine
- → Distributed data stores:
 - Mongo, Minio, Redis
- → Very modular, re-usable
- → Rapid deployment (even cluster)

What we learned along the way...

Lessons

- Devops: kubernetes, docker, docker-compose
- Parallelization: celery, dask, joblib,...
- Modularity: (stateless) microservices architecture
- Persistence: scalable distributed caching/persistence (redis, mongo, ES,...)
- Future-proofing: wrapper patterns
- Performance: cython or pythran for bottleneck code

Docker & Kubernetes

Dockerize early, dockerize often

- 1. Uniform environment between devs
 - a. Use ipython to develop in stack
- 2. Easy to add services
 - a. Solve dev problems using devops!
- 3. Fast, consistent deploy to production
 - Deploying our stack is rate-limited by download speed :-)
- 4. Cut costs by running on bare metal
 - a. Run your own "AWS" with k8ns

```
sheer@core:docker$ sudo ./run_stack.sh start xynnweb
** USING DEV MODE
Creating docker_mongo-nascent-svc_1
Creating docker_spacy-svc_1
Creating docker_mysql-sia-svc_1
Creating docker_redis-svc_1
Creating docker_mysql-kg-svc_1
Creating docker_minio-svc-1_1
Creating docker_minio-svc-1_1
Creating docker_splinx-svc_1
Creating docker_splinx-svc_1
Creating docker_splinx-svc_1
Creating docker_splinx-svc_1
Sheer@core:docker$
```

type	AWS (reserved)	Hetzner (bare metal)
16 threads 64 gb ram	\$360/mo (no storage)	\$70/mo (1tb ssd)
GPU server	\$450/mo (K80)	\$120/mo (1080)

Celery for Parallelization

10 minute parallelization

- Many interesting options for parallelization:
 - Dask.distributed, joblib, celery, ipython
- Celery "complicated" -- requires Redis/RabbitMQ, etc..
 - Very easy with docker/kubernetes
 - NOTE: Redis has much lower latency
- Transparent parallelization
 - Wrap "entry-point" functions in a task and Bob's your uncle.
- Lots of fancy features but don't need to use them until you need them.

```
@app.task()
def do_something_parallel(func_args, func_kwargs):
    t0=time.time()
    res=do_something(*func_args, **func_kwargs)
    t1=time.time()
    return res,t1-t0
```

Stateless Microservices

Unlimited Scalability and Flexibility

- High level analog of an Abstract Base Class
- Split codebase into *independent* microservices
 - Each microservices handles one kind of thing: NLP, logging, DB persistence, etc...
 - Wrap underlying service *abstractly*: redis→ kv_cache, minio → kv_store, mysql → sql_db
- Applications can include multiple microservices talking to each other
- Microservices should be stateless
 - All state (caching, persistence, etc..) should be handled by external services (DB, redis, etc..)
- Microservices encapsulate underlying implementation of a service
- Microservices are <u>not</u> micro-servers: services are just APIs within an API.
 - Should not be tied to an interface (REST, JSON, etc..)

Distributed Persistence

Let others do the hard work

- All persistence handled by "layers" of persistence services.
 - Layering helps performance
- Persistent services accessed via "wrappers" (see next slide) for easy replacement.
- "State" of services managed by distributed cache
 - ML models can be shared by workers using e.g. Redis (caching) and Minio (persistence)
- Different types of persistence for different problems:
 - Mongo stores JSON, Minio stores blobs, mysql stores tables

Design Patterns

Wrapper Pattern

- Wrap access to all external services (db, logging, etc..)
- Easy to swap in new versions
 - o MySQL vs Postgres, etc.
- Easily add logging, performance, etc..
- Insert custom logic to modify the behavior, eg
 - Manually shard/replicate DBs
 - Add new logging destinations
- This pattern has saved us countless hours of refactoring!

Examples

- Local → Centralized logging & config with just a few lines of code.
- Migrating from NLTK to better (in-house) NLP
- Restricting user access to DB by transparently replacing tables with views.

Performance

- Use native types correctly:
 - o set vs list, iteritems vs items
- Pythonic code is almost always faster.
- Use %timeit to test code snippets everywhere
- Beware of hidden memory allocation
- For critical bottlenecks use:
 - Pythran (very easy but limited coverage)
 - Cython (harder, but more flexible)
- For ML use generators to stream data from disk/db (see gensim).
- Know your times

```
In [31]: strdict=dict( (str(k), str(k)) for k in range(10**6))
In [32]: %timeit '10' in strdict
100000000 loops, best of 3: 36.9 ns per loop
In [33]: %timeit '10' in strdict.keys()
10 loops, best of 3: 43.9 ms per loop
```

```
In [24]: t=np.random.normal(0,1, (10000,1,400))
In [25]: %timeit x=np.sum(t, axis=1)
100 loops, best of 3: 5.58 ms per loop
In [26]: %timeit x=t.reshape((t.shape[0], t.shape[2]))
The slowest run took 14.48 times longer than the fastest.
1000000 loops, best of 3: 544 ns per loop
```

```
In [82]: s1=set(str(x) for x in np.random.randint(0,10**6, (10**6,)))
In [83]: s2=set(str(x) for x in np.random.randint(0,10**6, (10**6,)))
In [84]: %timeit len(s1.intersection(s2))
10 loops, best of 3: 67.9 ms per loop
```

Performance (II)

Example

Classifying (short) documents

- Initial rate: 2k docs/sec
- Initial Profiling:
 - Db read rate: 250k docs/s
 - Feature generation 2k docs/s
 - Classification 10k docs/s
- Feature generation involves for-loops & complex logic.

Fixes

- Refactored feature generation:
 - Extract features in list comprehensions
 - Convert to vectors in Pythran code
- New times
 - Python part: 10k docs/s
 - Pythran: 40k docs/s
- Fix memory allocation in classifier: 50k docs/s
- New times: ~10k docs/s
- Going forward: cache features in Mongo?

Further Reading...

Radim Řehůřek (gensim):

"Does Python Stand a Chance in Today's World of Data Science" (https://youtu.be/jfbgt3KjWFQ)

- High Performance Python (O'Reilly)
 - "Lessons from the Field" (chapter 12)
- Fluent Python (O'Reilly)
- Latency Numbers Every Programmer Should Know

https://gist.github.com/jboner/2841832

Open Problems

Cores vs RAM

- Many models require lots of RAM (models can be Gbs in size).
- Models read-only but because of python GIL hard to share memory between "processes/threads"
- Output of the control of the cont
- Generating models from terabytes of data?
 - "Embedding models" can capture interesting information from huge amounts of data
 - Train very quickly (millions words/sec per server)
 - o How can we distribute parameters/data between large number of workers?