
Building a high-performance, scalable
ML & NLP platform with Python

Sheer El Showk

CTO, Lore Ai

www.lore.ai

Lore is a small startup focused on developing and applying
machine-learning techniques to solve a wide array of business

problems.

We are product-focused but we also provide consulting services
(because building and selling products is hard!)

We are self-funded so we need to be cost-effective but also flexible and scalable.

- Need to be ready to pivot if product is not working
- Need to support both consulting work and product development

Over time developed a complex but modular stack:

- ML & NLP tools/services
- Standard web-stack: DB, caching, API servers, web servers
- Fully scalable (all components can be parallelized)

This has allowed us to develop & maintain several products:

- A chatbot
- A content-based recommender engine
- Our flagship product, Salient, a powerful document analysis engine

The Task

Client Data

Convert &
Parse

ML/NLP Services
-Question-Answering
-Document Similarity
-Information extraction

NLP Processing
Annotated
Documents

Entity Linking

Client
 Knowledge Graph

Upload Docs

ETL

Web/API
Servers

Client

NLP Pipeline
-Grammar parsing
-Parts-of-speech
-Entities (people,etc..)

Knowledge Graph

Applications

● Contract Management: automate labelling database of contracts (PDFs, word, OCR)

○ Contract type, expiration date, other parties, important clauses, etc..

● Analyze news

○ Build a database of product releases or funding rounds from press releases

○ Find companies fitting a profile -- competitors, acquisition, investors, etc..

● Patent and Policy Document Analysis

○ Build an ontology and network linking concepts and content

The Challenges

Lore’s stack has all the normal challenges of developing a
large web/business application in python.

The addition of ML/NLP brings additional challenges
whose solutions are less well known.

Scalability

● Some use cases require processing millions of documents

○ E.g. we have a news DB with 4 million articles in it

● Python considered “slow” and not scalable (hard to parallelize)

○ Java preferred language of enterprise

● ML brings new problems:

○ Need models to be very performant

○ Parallelizing harder: need to share models/data between servers

Maintainability

● Mixing many different technologies

○ ML/compute stack: theano, gensim, spaCy, etc..

○ Web stack: django, celery, mysql, etc..

● Multiple servers/services can mean expensive/difficult devops.

● Large code base with different kinds of code (JS/web vs ML/NLP) make it hard to

coordinate between developers.

Flexibility

● Business requirements change very quickly

○ Need to provide a wide range of services from same platform

○ Need to be able to easily upgrade/improve parts of system

● Agility often requires integrating existing off-the-shelf solutions to solve non-core tasks.

● Easy to deploy or scale a deployment.

Where we Started

Where we started...

➔ Monolithic python-based server + PHP UI

➔ MySQL DB backend

➔ Hard coded dependence on target document set.

➔ Basic off-the-shelf NLP tools

◆ NLTK, etc..

➔ Serial pipeline

➔ No redundancy or scalability

➔ Hard to install/maintain (all manual)

A few pivots and consulting gigs later...

The new stack...

Mongo
Cluster

MySQL
(soon

ElasticSearch)

Minio
(distributed blob

storage)

Input
Processor

Service
Broker

Load
B

alancer

NLP
Services

Django
Web

Web
scrapers

Pipeline

Logging

Cron-jobs

KG
Service

Entity
Generator

➔ Kubernetes & docker for devops

➔ Celery for parallelization

➔ Micro-services Architecture

➔ In-house NLP engine

➔ Distributed data stores:

◆ Mongo, Minio, Redis

➔ Very modular, re-usable

➔ Rapid deployment (even cluster)

Django
API

Celery Workers

Redis
(distributed

caching)

What we learned along the
way...

Lessons

● Devops: kubernetes, docker, docker-compose

● Parallelization: celery, dask, joblib,...

● Modularity: (stateless) microservices architecture

● Persistence: scalable distributed caching/persistence (redis, mongo, ES,...)

● Future-proofing: wrapper patterns

● Performance: cython or pythran for bottleneck code

Docker & Kubernetes
Dockerize early, dockerize often

1. Uniform environment between devs

a. Use ipython to develop in stack

2. Easy to add services

a. Solve dev problems using devops!

3. Fast, consistent deploy to production

a. Deploying our stack is rate-limited by
download speed :-)

4. Cut costs by running on bare metal

a. Run your own “AWS” with k8ns

type AWS
(reserved)

Hetzner
(bare metal)

16 threads
64 gb ram

$360/mo
(no storage)

$70/mo
(1tb ssd)

GPU server $450/mo
(K80)

$120/mo
(1080)

Celery for Parallelization
10 minute parallelization

● Many interesting options for parallelization:

○ Dask.distributed, joblib, celery, ipython

● Celery “complicated” -- requires Redis/RabbitMQ, etc..

○ Very easy with docker/kubernetes

○ NOTE: Redis has much lower latency

● Transparent parallelization

○ Wrap “entry-point” functions in a task and Bob’s your uncle.

● Lots of fancy features but don’t need to use them until you need them.

Stateless Microservices
Unlimited Scalability and Flexibility

● High level analog of an Abstract Base Class

● Split codebase into independent microservices

○ Each microservices handles one kind of thing: NLP, logging, DB persistence, etc…

○ Wrap underlying service abstractly: redis→ kv_cache, minio → kv_store, mysql → sql_db

● Applications can include multiple microservices talking to each other

● Microservices should be stateless

○ All state (caching, persistence, etc..) should be handled by external services (DB, redis, etc..)

● Microservices encapsulate underlying implementation of a service

● Microservices are not micro-servers: services are just APIs within an API.

○ Should not be tied to an interface (REST, JSON, etc..)

NLP ServiceNLP Service

Distributed Persistence
Let others do the hard work

● All persistence handled by “layers” of persistence
services.

○ Layering helps performance

● Persistent services accessed via “wrappers” (see next
slide) for easy replacement.

● “State” of services managed by distributed cache

○ ML models can be shared by workers using e.g. Redis
(caching) and Minio (persistence)

● Different types of persistence for different problems:

○ Mongo stores JSON, Minio stores blobs, mysql stores
tables

Minio
(distributed blob

storage)

Redis
(distributed

caching)

cache

save

Neural
network

NLP Service

create/
train

Design Patterns

Wrapper Pattern

● Wrap access to all external services (db,
logging, etc..)

● Easy to swap in new versions

○ MySQL vs Postgres, etc.

● Easily add logging, performance, etc..

● Insert custom logic to modify the behavior, eg

○ Manually shard/replicate DBs

○ Add new logging destinations

● This pattern has saved us countless hours of
refactoring!

Examples

● Local → Centralized logging & config with just
a few lines of code.

● Migrating from NLTK to better (in-house) NLP

● Restricting user access to DB by transparently
replacing tables with views.

Performance

● Use native types correctly:

○ set vs list, iteritems vs items

● Pythonic code is almost always faster.

● Use %timeit to test code snippets everywhere

● Beware of hidden memory allocation

● For critical bottlenecks use:

○ Pythran (very easy but limited coverage)

○ Cython (harder, but more flexible)

● For ML use generators to stream data from
disk/db (see gensim).

● Know your times

Performance (II)
Example

Classifying (short) documents

● Initial rate: 2k docs/sec

● Initial Profiling:

○ Db read rate: 250k docs/s

○ Feature generation 2k docs/s

○ Classification 10k docs/s

● Feature generation involves for-loops &
complex logic.

Fixes

● Refactored feature generation:

○ Extract features in list comprehensions

○ Convert to vectors in Pythran code

● New times

○ Python part: 10k docs/s

○ Pythran: 40k docs/s

● Fix memory allocation in classifier: 50k docs/s

● New times: ~10k docs/s

● Going forward: cache features in Mongo?

Further Reading...

● Radim Řehůřek (gensim):

“Does Python Stand a Chance in Today’s World of Data Science”
(https://youtu.be/jfbgt3KjWFQ)

● High Performance Python (O’Reilly)

○ “Lessons from the Field” (chapter 12)

● Fluent Python (O’Reilly)

● Latency Numbers Every Programmer Should Know

https://gist.github.com/jboner/2841832

https://youtu.be/jfbgt3KjWFQ

Bye!

Open Problems

● Cores vs RAM

○ Many models require lots of RAM (models can be Gbs in size).

○ Models read-only but because of python GIL hard to share memory between “processes/threads”

○ Use “sharedmem” module?

● Generating models from terabytes of data?

○ “Embedding models” can capture interesting information from huge amounts of data

○ Train very quickly (millions words/sec per server)

○ How can we distribute parameters/data between large number of workers?

